# Percolation of Level Sets for Two-Dimensional Random Fields with Lattice Symmetry 

Kenneth S. Alexander ${ }^{1}$ and Stanislav A. Molchanov ${ }^{1,2}$

Received January 5, 1994; final April 20, 1994


#### Abstract

Let $\psi(x), x \in \mathbb{R}^{2}$, be a random field, which may be viewed as the potential of an incompressible flow for which the trajectories follow the level lines of $\psi$. Percolation methods are used to analyze the sizes of the connected components of level sets $\{x: \psi(x)=h\}$ and sets $\{x: \psi(x) \leqslant h\}$ in several classes of random fields with lattice symmetry. In typical cases there is a sharp transition at a critical value of $h$ from exponential boundedness for such components to the existence of an unbounded component. In some examples, however, there is a nondegenerate interval of values of $h$ where components are bounded but not exponentially so, and in other cases each level set may be a single infinite line which visits every region of the lattice.


KEY WORDS: Lagrangian trajectory; incompressible flow; turbulent diffusion; percolation; statistical topography; minimal spanning tree; random field; shot noise.

## 1. INTRODUCTION

Let $\mathbf{V}(x, \omega), x \in \mathbb{R}^{d}$, be a homogeneous ergodic incompressible flow in dimension $d \geqslant 2$. Lagrangian trajectories are the trajectories of passive particles imbedded in the flow, that is, solutions of the ODE

$$
\begin{equation*}
\dot{x}_{t}=\mathbf{V}\left(x_{1}, \omega\right) \tag{1.1}
\end{equation*}
$$

Here $\omega$ can be considered an index in the ensemble $\Omega$ of all realizations of the random flow $\mathbf{V}$; the probability space $(\Omega, \mathscr{F}, P)$ has probability measure $P$ invariant and ergodic with respect to translations of $\mathbb{R}^{d}$. The

[^0]problem of the qualitative structure of the solutions of (1.1) is of great physical importance, because the transport properties of the flow, such as heat propagation, depend on this structure. Time-independent random flows are especially important in plasma physics, where velocity fields are usually generated by magnetic fields which are themselves fixed over time, or changing only very slowly.

The physics literature on this subject is extensive (see refs. 1-7 and the references therein; ref. 2 is a review), but the analysis is generally based on numerical simulations and physical intuition. Refs. 8 and 9 are among the few mathematically rigorous studies of the problem.

The central working physical hypothesis about Lagrangian trajec-tories-sometimes called the Sagdeev hypothesis, after the Russian astrophysicist R.Sagdeev-can be formulated as follows: for $d=2$, if the mean $\langle\mathbf{V}\rangle=0$, then in "typical situations" the Lagrangian trajectory containing a given point $x_{0}$ is a bounded loop $P$-a.s., and moreover, the size of this loop has finite moments of all orders, even perhaps an exponential moment. Transport of passive particles is then impossible. If the model incorporates a nonzero molecular diffusivity, i.e., a small diffusion term is added to (1.1), nontrivial transport will occur; in some rescaled limit there is turbulent diffusion. For $d \geqslant 3$, with again $\langle\mathbf{V}\rangle=0$, in typical cases there is coexistence of two different types of Lagrangian trajectories: closed loops, which correspond to islands of stability for the system (1.1), and unbounded trajectories, which underlie the transport of passive particles for arbitrarily small molecular diffusivities. Thus the problem of describing Lagrangian trajectories is closely related to questions about turbulent diffusion.

In this paper we will consider some two-dimensional models which are hybrids of lattice and continuum models, where it is possible to get fairly complete information about the structure of the Lagrangian trajectories, using results and ideas from percolation theory. Related models were studied in refs. 1,4 , and 7 . Besides proving results about these models, our goal is to formulate some new mathematical problems in the area.

## 2. RANDOM FIELDS WITH LATTICE SYMMETRY

For $d=2$ an arbitrary incompressible vector field $\mathbf{V}(x, \omega)$ with $\langle\mathbf{V}\rangle=0$ can be represented as the curl of a homogeneous scalar potential $\psi(x)$, i.e.,

$$
\mathbf{V}=\left(-\partial \psi / \partial x_{2}, \partial \psi / \partial x_{1}\right)
$$

This means that each Lagrangian trajectory is an appropriately parametrized level line of $\psi$, at least provided there are no critical points of $\psi$ (where $\nabla \psi=0$ ) on the level line. Let

$$
\begin{aligned}
S_{h} & =\{x: \psi(x)=h\} \\
S_{\leqslant h} & =\{x: \psi(x) \leqslant h\}
\end{aligned}
$$

and

$$
\mathscr{H}_{\mathrm{cr}}=\left\{h \in \mathbb{R}: S_{h} \text { contains a critical point of } \psi\right\}
$$

If $\psi \in C^{1}$, then by Sard's Theorem, the set $\mathscr{H}_{\text {cr }}$ has Lebesgue measure 0. If $x_{0} \in S_{h}$ and $h \notin \mathscr{H}_{\text {cr }}$, then the Lagrangian trajectory starting at $x_{0}$ will be periodic if and only if it is closed.

It is common to think of $\psi$ as the elevation of a landscape and $h$ as a level to which this landscape has been filled with water. Then $S_{\leqslant h}$ consists of lakes and/or an infinite ocean, and its complement consists of islands and/or an infinite land mass. The usual assumption in the physics literature (see, e.g., ref. 2) is that, for "typical" random fields (stationary, ergodic, rapidly decaying correlations, etc.) there is a sharp transition at some critical value of $h$ from a land mass with lakes to an ocean with islands.

One reasonably physically realistic type of potential is shot noise, that is, a random field of the form

$$
\psi(x)=\sum_{i} A_{i} \varphi\left(\left|x-x_{i}\right|\right)
$$

where $\left\{A_{i}, i \geqslant 1\right\}$ are i.i.d. random variables with $\langle | A_{i}| \rangle<\infty$, $X=\left\{x_{i}: i \geqslant 1\right\}$ is the set of sites of a lattice, a Poisson process, or some other locally finite stationary point process, and $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies

$$
\int_{\mathbb{R}^{2}} \varphi(|x|) d x<\infty
$$

Analysis of the level lines for such potentials is in general a complex problem, even if $\varphi$ and/or the correlation

$$
B(x)=\langle\psi(0) \psi(x)\rangle-\langle\psi(0)\rangle\langle\psi(x)\rangle
$$

decrease rapidly with increasing $|x|$. In the Gaussian case it is known ${ }^{(9)}$ that for some $h_{0}$, for $|h|>h_{0}$ the level set $S_{h}$ has only bounded connected components, and the lengths of these components have an exponential
moment. Let us say that a subset of $\mathbb{R}^{2}$ percolates if it has an unbounded connected component; the corresponding percolation problem for $|h|<h_{0}$ is not solved.

Nonetheless, by taking the set $X$ of sites to be a lattice, we can consider a class of continuous models with lattice symmetry, to which results on two-dimensional lattice percolation can be applied; see ref. 10 or 11 for the necessary background on lattice percolation. Other latticesymmetric models, not only of shot noise form, have been considered in refs. $1,3,4$, and 7.

Let $\mathbb{L}$ be one of three standard two-dimensional lattices: the square lattice $\mathbb{Z}^{2}$, the triangular lattice $\mathbb{T}^{2}$, and the hexagonal lattice $\mathbb{H}^{2}$, each with nearest-neighbor bonds of length 1 . The lattice $\mathbb{L}$ divides the plane into faces which are either squares, triangles, or hexagons with sides of unit length. Let $D$ denote the closed unit disk in $\mathbb{R}^{2}$ and suppose $\varphi$ : $[0, \infty) \rightarrow[0,1]$ is a smooth function strictly decreasing on its support [ $0,1 / 2+\varepsilon$ ], with $0<\varepsilon<1 / 2$ chosen small enough so that the translates $x+(1 / 2+\varepsilon) D, x \in \mathbb{Z}$, intersect only pairwise. Suppose also that $\varphi(0)=1$ and that $\varphi$ is strictly convex on $[1 / 2-\varepsilon, 1 / 2+\varepsilon]$. The latter ensures that if $b$ is a bond of $\mathbb{L}$ with endpoints $x$ and $y$, then

$$
\inf _{w \in b}(\varphi(|w-x|)+\varphi(|w-y|))=\inf _{t \in[0.1]}(\varphi(t)+\varphi(1-t))=2 \varphi(1 / 2)
$$

or more generally that for arbitrary positive constants $c_{1}$ and $c_{2}$,

$$
\inf _{w \in b}\left(c_{1} \varphi(|w-x|)+c_{2} \varphi(|w-y|)\right)=\inf _{t \in[0,1]}\left(c_{1} \varphi(t)+c_{2} \varphi(1-t)\right)
$$

is uniquely achieved at $w=t_{0} y+\left(1-t_{0}\right) x$ for some $t_{0}=t_{0}\left(c_{1}, c_{2}, \varphi\right) \in$ $[1 / 2-\varepsilon, 1 / 2+\varepsilon]$.

Let $H$ denote the set of points in $\mathbb{R}^{2}$ for which 0 is the closest site in $\mathbb{L}: H=[-1 / 2,1 / 2]^{2}$ if $\mathbb{L}=\mathbb{Z}^{2}, H$ is a hexagon centered at 0 if $\mathbb{L}=\mathbb{T}^{2}$, and $H$ is a triangle centered at 0 if $\mathbb{L}=H^{2}$. Let $U$ be a random variable uniform over $H$, let $X=\left\{x_{i}, i \geqslant 1\right\}$ be the set of sites of the lattice $\mathbb{L}$, and let $\left\{A_{i}, i \geqslant 1\right\}$ be i.i.d. symmetric random variables. Our random potential is then

$$
\psi(x)=\sum_{i} A_{i} \varphi\left(\left|x-x_{i}-U\right|\right)
$$

It is clear that $\psi$ is invariant and ergodic with respect to translations of $\mathbb{R}^{2}$. Further,

$$
B(x)=0 \quad \text { for } \quad|x|>1+2 \varepsilon
$$

Of course due to the lattice structure the tail $\sigma$-field of $\psi$ is not trivial. Let $\Gamma$ denote the connected component of the level set $S_{\psi(0)}$ which contains the origin, and

$$
R=\sup \{|x|: x \in \Gamma\}
$$

Model 1. We first consider the triangular lattice and $A_{i}= \pm 1$ with probability $1 / 2$ each. Here we observe a sort of critical interval of levels, $-h_{\mathrm{cr}}<h<h_{\mathrm{cr}}$, where components of the level sets $S_{h}$ and regions $S_{\leqslant h}$ are bounded but not with an exponential moment. Thus, in contrast with the usual assumption made in the physics literature, there is no sharp transition at some critical value of $h$ from an unbounded land mass with exponentially bounded lakes to an unbounded ocean with exponentially bounded islands. No level lines percolate.

Theorem 2.1. For the lattice $\mathbb{L}=\mathbb{T}^{2}$ and $A_{i}= \pm 1$ with probability $1 / 2$ each, and for $h_{\mathrm{cr}}=2 \varphi(1 / 2)$,
(a) $S_{\leqslant h}$ percolates if and only if $h \geqslant h_{\text {cr }}$
(b) $S_{h}$ percolates for no $h$
(c) for some positive constants $c_{3}$ and $\gamma, P(R>t) \geqslant c_{3} t^{-\gamma}$
(d) for $|h|>h_{\mathrm{cr}}$, the connected components of $S_{h}$ have diameter bounded by $1+2 \varepsilon$
(e) for all $|h|<h_{\text {cr }}$, for some positive constants $c_{4}=c_{4}(h)$ and $\alpha$,

$$
P(R>t \mid \psi(0)=h) \geqslant c_{4} t^{-\alpha}
$$

The proof will require the following result.

Lemma 2.2. Let $p_{n} \geqslant 0$ and $r_{n}=\sum_{k=n}^{\infty} p_{k}$. Suppose that for some positive constants $a_{1}, a_{2}, \alpha$, and $\beta$,

$$
a_{1} n^{-\beta} \leqslant r_{n} \leqslant a_{2} n^{-\alpha} \quad \text { for all } n \geqslant 1
$$

Let $\gamma>0$ and $\delta=\beta(\gamma+\alpha) / \alpha$; then there exists $a_{3}>0$ such that

$$
\sum_{k=n}^{\infty} k^{-\gamma} p_{k} \geqslant a_{3} n^{-\delta} \quad \text { for all } n \geqslant 1
$$

Proof. Choose $c$ so that $2 a_{2} c^{-\alpha}<a_{1}$. If $k \geqslant c n^{\beta / \alpha}$, then

$$
r_{k} \leqslant a_{2} k^{-\alpha} \leqslant a_{2} c^{-\alpha} n^{-\beta} \leqslant r_{n} / 2
$$

Hence from summation by parts,

$$
\begin{aligned}
\sum_{k=n}^{\infty} k^{-r} p_{k} & =n^{-r} r_{n}-\sum_{k=n+1}^{\infty} r_{k}\left[(k-1)^{-r}-k^{-\gamma}\right] \\
& =\sum_{k=n+1}^{\infty}\left(r_{n}-r_{k}\right)\left[(k-1)^{-r}-k^{-\gamma}\right] \\
& \geqslant\left(r_{n} / 2\right) \sum_{k \geq c c^{\beta \beta /}}\left[(k-1)^{-\gamma}-k^{-\gamma}\right] \\
& \geqslant\left(r_{n} / 2\right)\left(c n^{\beta / \alpha}\right)^{-\gamma} \\
& \geqslant a_{3} n^{-\delta}
\end{aligned}
$$

In an abuse of terminology, when confusion is unlikely, we will identify a planar graph with the set of its bonds, and identify a bond with the line segment in $\mathbb{R}^{2}$ connecting its endpoints.

Proof of Theorem 2.1. We need some facts about site percolation on $\mathbb{T}^{2}$ with sites independently occupied with probability $p$. At the critical probability $p_{c}=1 / 2$, neither occupied nor vacant sites percolate. ${ }^{(12)}$ Therefore every site is surrounded by a sequence of disjoint circuits $C_{i}, i \geqslant 1$, with all sites in $C_{i}$ occupied if $i$ is even, and all sites vacant if $i$ is odd. In the present model we can designate a site $x_{i}$ as a plus, or occupied, site if $A_{i}=1$, and a minus, or vacant, site if $A_{i}=-1$. The circuits $C_{i}$ can then be labeled plus and minus circuits.

If $h<h_{\mathrm{cr}}$ then $S_{\leqslant h}$ cannot cross any plus circuit, so does not percolate. If $h \geqslant h_{\text {cr }}$, then each component of the complement of $S_{\leqslant h}$ is contained in the support of a single function $\varphi\left(\left|\cdot-x_{i}-U\right|\right)$, i.e., $S_{\leqslant h}$ crosses every bond, so it is clear that $S_{\leqslant h}$ percolates, and (a) is proved. Statement (d) is proved similarly. Statement (b) follows from the fact that no level line can cross both plus and minus circuits.

Fix $h, 0<|h|<h_{\text {cr }}$; let

$$
B_{i}=\left\{x \in \mathbb{R}^{2}:\left|x-x_{i}\right| \leqslant 1 / 2+\varepsilon\right\}
$$

and set

$$
V=\left\{x \in \mathbb{R}^{2}: x \in B_{i} \text { for exactly one } i\right\}
$$

For $x \in \mathbb{R}^{2}$ let $X(x)$ be a site $x_{i}$ which minimizes $\left|x-x_{i}\right|$. Since the regions $B_{i}$ intersect only pairwise, if $x_{i}$ is a plus site, then ( $\left.S_{h}-U\right) \cap V \cap B_{i}$ consists of six equal nonempty arcs of a circle, which we call basic arcs of $S_{h}-U$, and

$$
p_{V}(h)=P(-U \in V \mid \psi(0)=h)>0
$$

Here $S_{h}-U$ denotes the translate of the set $S_{h}$ by $-U$.

One can place a bond between every nearest-neighbor pair of sites which have the same sign; the resulting connected components are called plus clusters and minus clusters. The outer boundary of a cluster $C$ is

$$
\partial C=\{x \in C: x \text { is connected to infinity by a lattice path outside } C \backslash\{x\}\}
$$

Let $|F|$ denote the number of sites in a set $F$. If $x_{i}$ is a site in $C \backslash \partial C$, then the hexagon $\left\{x: X(x)=x_{i}\right\}$ of area $\sqrt{3 / 4}$ is entirely inside the contour $\partial C$; it follows that

$$
\begin{aligned}
|\partial C| & =\text { length of } \partial C \\
& \geqslant 2 \sqrt{\pi} \cdot(\text { area enclosed by } \partial C)^{1 / 2} \\
& \geqslant c_{s}(|C|-|\partial C|)^{1 / 2}
\end{aligned}
$$

for some constant $c_{5}$, which implies

$$
\begin{equation*}
|\partial C| \geqslant c_{6}|C|^{1 / 2} \tag{2.1}
\end{equation*}
$$

Let $C_{0}$ denote the cluster of 0 [ necessarily a plus cluster if $\psi(0)>0$ and a minus cluster if $\psi(0)<0$ ]. Now $S_{h}$ includes a loop $\gamma_{0}$ which encloses $C_{0}$, and hence encloses area at least $c_{7}\left|C_{0}\right|$, for some $c_{7}=c_{7}(h)$. Therefore the length of $\gamma_{0}$ is at least $c_{8}\left|C_{0}\right|^{1 / 2}$. If $-U \in \gamma_{0}$, then $\Gamma=\gamma_{0}$, so $R \geqslant c_{8}\left|C_{0}\right|^{1 / 2}$. If $0=x_{i} \in \partial C_{0}$, then at least two of the six basic arcs in $B_{i}$ are part of $\gamma_{0}$. It follows that

$$
\begin{align*}
P\left(R \geqslant c_{8} n^{1 / 2} \mid \psi(0)=h\right) & \geqslant P\left(-U \in \gamma_{0},\left|C_{0}\right| \geqslant n \mid \psi(0)=h\right) \\
& \geqslant P\left(-U \in V, 0 \in \partial C_{0},\left|C_{0}\right| \geqslant n \mid \psi(0)=h\right) / 3 \\
& =P\left(0 \in \partial C_{0},\left|C_{0}\right| \geqslant n\right) p_{v}(h) / 3 \\
& \geqslant \frac{1}{3} p_{v}(h) \sum_{k=n}^{\infty} c_{6} k^{-1 / 2} P\left(\left|C_{0}\right|=k\right) \tag{2.2}
\end{align*}
$$

The equality in (2.2) follows from the fact that knowing $-U \in V$ and $\psi(0)=h$ does not condition the sign (plus or minus) of any site other than $X(-U)$. The last inequality follows from (2.1).

Now for some constants $a_{1}, a_{2}$, and $\alpha>0$,

$$
a_{1} n^{-1 / 2} \leqslant P\left(\left|C_{0}\right| \geqslant n\right) \leqslant a_{2} n^{-\alpha}
$$

(see ref. 10, Theorem 9.89; the proof for site percolation on the triangular lattice is similar.) Hence for $0<|h|<h_{\mathrm{cr}}$, (e) follows from Lemma 2.2 and (2.2), and then (c) follows.

It remains to prove (e) for $h=0$. Let $\left\{J_{i}, i \geqslant 1\right\}$ be a listing of the faces, and $K_{i}=J_{i} \backslash \bigcup_{j} B_{j}$. For any bond $b$ separating two adjacent faces $J_{i}$ and $J_{k}$, the dual bond $b^{*}$ is the perpendicular bisector of $b$ with endpoints at the centers of $J_{i}$ and $J_{k}$. Let $S$ denote the union of all bonds $b^{*}$ dual to bonds $b$ for which the endpoints of $b$ are of opposite sign. Then

$$
\begin{equation*}
S_{0}=S \cup \bigcup_{i \geqslant 1} K_{i} \tag{2.3}
\end{equation*}
$$

Given $\psi(0)=0$, we thus have $-U \in \bigcup_{i} K_{i}$ a.s., so we can define $K$ to be the region $K_{i}$ which contains $-U$. If $0 \in \partial C_{0}$ and $K$ is connected to infinity outside $C_{0}$, then $\Gamma$ contains a curve surrounding $C_{0}$. At least two of the six triangular faces $J_{i}$ with 0 as one vertex are connected to infinity outside $C_{0}$, so for some constant $c_{9}$,

$$
\begin{aligned}
P(R \geqslant t \mid \psi(0)=0) & \geqslant P\left(\operatorname{diam}\left(C_{0}\right) \geqslant t, 0 \in \partial C_{0} \mid \psi(0)=0\right) / 3 \\
& \geqslant P\left(\left|C_{0}\right| \geqslant c_{9} t^{2}, 0 \in \partial C_{0}\right) / 3
\end{aligned}
$$

and (e) follows as for $0<|h|<h_{\text {cr }}$.
Model 2. We consider the square or hexagonal lattice and $A_{i}= \pm 1$ with probability $1 / 2$ each. In contrast to model 1 , here there is no critical interval, but rather a single critical level of 0 , which is the only level which percolates. All other level lines are exponentially bounded.

Theorem 2.3. For the lattice $\mathbb{L}=\mathbb{Z}^{2}$ or $\mathbb{H}^{2}$ and $A_{i}= \pm 1$ with probability $1 / 2$ each,
(a) $S_{\leqslant h}$ percolates if and only if $h \geqslant 0$
(b) $S_{h}$ percolates only for $h=0$
(c) for $|h|>2 \varphi(1 / 2)$ the connected components of $S_{h}$ have diameter bounded by $1+2 \varepsilon$
(d) for some constants $c_{i}$, for all $h \neq 0, P(R>t \mid \psi(0)=h) \leqslant$ $c_{10} \exp \left(-c_{11} t\right)$

This model thus has the main properties considered "generic" in the physics literature: bounded $S_{h}$ for all $h$ except the critical level $h=0$, with an exponential moment for $h \neq 0$.

Proof of Theorem 2.3. We continue with the terminology of the proof of Theorem 2.1. Any pair of sites from the boundary of a single face (or the line segment connecting these two sites) is called a ${ }^{*}$-bond, and a *-circuit is a circuit composed of ${ }^{*}$-bonds. A circuit is a plus ${ }^{*}$-circuit or a minus ${ }^{*}$-circuit if all sites on it have the corresponding sign. A *-path is a
path consisting of *-bonds, and we say there is ${ }^{*}$-percolation of plus (or minus) sites if there is an infinite *-path on which all sites are plus (or minus) sites. A site with a given sign is part of a finite cluster if and only if it is surrounded by a *-circuit of opposite sign.

The term circuit or cluster, without the *, still refers to connection via nearest-neighbor bonds.

For nearest-neighbor site percolation on $\mathbb{Z}^{2}$ or $\mathbb{H}^{2}$, we have ${ }^{(11,13)}$

$$
\begin{equation*}
p_{c}>1 / 2 \tag{2.4}
\end{equation*}
$$

so at density $1 / 2$, neither plus nor minus sites percolate. Therefore every site is surrounded by a disjoint sequence of *-circuits $C_{i}, i \geqslant 1$, with all sites in $C_{i}$ plus sites if $i$ is even, and all sites minus if $i$ is odd. Given a plus *-circuit, there is a curve passing through the same sites and faces as the plus ${ }^{*}$-circuit; in the same order, such that $\psi(x) \geqslant 0$ at every $x$ in the curve; one merely moves the plus ${ }^{*}$-circuit slightly so it does not pass through $B_{j}$ for any minus site $x_{j}$. This curve cannot be crossed by $S_{\leqslant h}$ for $h<0$, so $S_{h}$ and $S_{\leqslant h}$ do not percolate for $h<0$. The same proof applies to $S_{h}$ for $h>0$, so to prove (a) and (b) it remains to show $S_{0}$ percolates.

It follows from (2.3) that every bounded component of $S_{0}$ is surrounded by either a plus circuit or a minus circuit, as this is the only kind of circuit that is not crossed by $S_{0}$. From ref. 12, or ref. 11, Corollary 3.1, we have that the critical probability $p_{c}^{*}$ for ${ }^{*}$-percolation satisfies

$$
p_{c}^{*}=1-p_{c}
$$

Therefore by (2.4), *-percolation of minus sites occurs at density $1 / 2$, so there can be only finitely many plus circuits surrounding the origin. Similarly, only finitely many minus circuits surround the origin, so $S_{0}$ must have an unbounded component, i.e., $S_{0}$ percolates. This completes the proof of (a) and (b).

If $\psi(0)=h \neq 0$, then $\Gamma$ is contained in $\bigcup_{i: x_{1} \in c_{0}} B_{i}$, so

$$
P(R>t \mid \psi(0)=h) \leqslant P\left(\operatorname{radius}\left(C_{0}\right)>t-2\right)
$$

Since $1 / 2<p_{c}$, the latter decays exponentially ${ }^{(14-16)}$ in $t$, which proves (d). Statement (c) is obvious.

Model 3. We consider the triangular lattice with general symmetric $A_{i}$. Here a critical interval as in model 1 exists if and only if $0 \notin \operatorname{supp}\left(A_{i}\right)$.

Theorem 2.4. For the lattice $\mathbb{L}=\mathbb{T}^{2}, A_{i} \operatorname{symmetric}, h_{0}=\inf \sup \left(\left|A_{i}\right|\right)$, and $h_{\mathrm{cr}}=2 h_{0}=\varphi(1 / 2)$,
(a) if $h_{0}>0$ and $P\left(A_{i}=h_{0}\right)=0$, then
(i) $S_{\leqslant h}$ percolates if and only if $h>h_{\mathrm{cr}}$
(ii) $S_{h}$ percolates for no $h$
(b) if $h_{0}=0$ and $P\left(A_{i}=0\right)=0$, then
(i) $S_{\leqslant h}$ percolates if and only if $h>0$
(ii) $S_{h}$ percolates for no $h$
(iii) for some constants $c_{i}$, for all $h \neq 0, P(R>t \mid \psi(0)=h) \leqslant$ $c_{12} \exp \left(-c_{13} t\right)$
(iv) for some constants $c_{14}$ and $\alpha, P(R>t \mid \psi(0)=0) \geqslant c_{14} t^{-\alpha}$
(c) if $h_{0}>0$ and $P\left(A_{i}=h_{0}\right)>0$, then
(i) $S_{\leqslant h}$ percolates if and only if $h \geqslant h_{\text {cr }}$
(ii) $S_{h}$ percolates for no $h$
(d) if $h_{0}=0$ and $P\left(A_{i}=0\right)>0$, then
(i) $S_{\leqslant h}$ percolates if and only if $h \geqslant 0$
(ii) $S_{h}$ percolates only for $h=0$

Further, if $h_{0}>0$, then (c) and (e) of Theorem 2.1 are valid.
The proof of Theorem 2.4 will require the following result.
Lemma 2.5. For the nearest-neighbor graph $G$ on the lattice $\mathbb{T}^{2}$, let $\mathscr{B}$ be the set of bonds, and let $p, \varepsilon>0$. Suppose that each site is independently labeled plus with probability $p$, minus with probability $1-p$, and, independently, marked with probability $\varepsilon$, unmarked with probability $1-\varepsilon$. Let

$$
\begin{aligned}
A & =\{b \in \mathscr{B}: \text { at least one endpoint of } b \text { is a minus site }\} \\
B & =\{b \in \mathscr{B}: \text { both endpoints of } b \text { are marked sites }\} \\
Z & =\left\{x \in \mathbb{T}^{2}: x \leftrightarrow 0 \text { by a path of bonds } b \notin A \cup B\right\} \\
W & =\left\{b^{*}: b \in A \cup B\right\}
\end{aligned}
$$

Then for $p=1 / 2, W$ percolates, and for some constants $c_{i}$

$$
\begin{equation*}
P(\operatorname{diam}(Z)>n) \leqslant c_{14} \exp \left(-c_{15} n\right) \tag{2.5}
\end{equation*}
$$

Note the conclusion that $W$ percolates is false for $\varepsilon=0$, for then $W$ cannot cross any plus circuit, and every site is surrounded by a plus circuit a.s. One may think of an adjacent pair of marked sites as creating a breach in a plus circuit where $W$ can cross it. Percolation of $W$ says that any
positive $\varepsilon$ is enough to create such breaches. Since $p_{c}=1 / 2$, this would be trivial if only a single marked site were needed for a breach, but the need for an adjacent pair complicates things.

Proof of Lemma 2.5. Let $\xi_{1}=(1,0), \xi_{2}=(1 / 2, \sqrt{3} / 2)$, so that the points $z_{i j}=i \xi_{1}+j \xi_{2}, i, j \in \mathbb{Z}$, are the sites of the triangular lattice. We wish to compare site percolation on $G$ with site percolation on a modified graph $\bar{G}$, constructed by adding a site $y_{i j}$ at the midpoint of the bond $\left\{z_{i, j+1}, z_{i+1, j}\right\}$ for each $i, j \in \mathbb{Z}$ with $i$ even. The matching graph $\widetilde{G}^{*}$ is then obtained from $\tilde{G}$ by adding a bond from $z_{i j}$ to $y_{i j}$, a bond from $y_{i j}$ to $z_{i+1, j+1}$, and a bond from $z_{i, j+1}$ to $z_{i+1, j}$, all for each $i, j \in \mathbb{Z}$ with $i$ even. (Note $\widehat{G}^{*}$ is not planar.) We now declare a site to be vacant if either it is a plus site in $\mathbb{T}^{2}$ or it is a site $y_{i j}$ and both $z_{i, j+1}$ and $z_{i+1, j}$ are marked. Otherwise the site is called occupied. Because the additional sites $y_{i j}$ exist only for even $i$, the occupied/vacant properties for distinct sites are independent.

By Theorem 1 of ref. 17 , for fixed $\varepsilon>0$ the critical value $p_{c}(\tilde{G})$ of $p$ for percolation of occupied sites in $\tilde{G}$ is strictly less than the critical value $1 / 2$ for $G$, so that also the critical value ${ }^{(12)} p_{c}\left(\widetilde{G}^{*}\right)=1-p_{c}(\widetilde{G})$ of $p$ for occupied percolation in $\widetilde{G}^{*}$ is strictly greater than $1 / 2$. Vacant sites percolate in $\widetilde{G}$ only when $p>p_{c}\left(\widetilde{G}^{*}\right)$ (ref. 10 , Corollary 3.1 ). Thus for $p=1 / 2$, occupied sites percolate in $\tilde{G}^{*}$, and (see Theorem 5.1 of ref. 11) the vacant cluster diameter in $\bar{G}$ has exponential tails, ${ }^{(14,15.16)}$ that is, (2.5) holds.

Let $H_{i j}$ denote the hexagonal region bounded by $\left\{b^{*}: b\right.$ is a bond of $G$ with $z_{i j}$ as one endpoint $\}$. Let $\tilde{\gamma}$ be an infinite path in $\tilde{G}^{*}$ in which all sites are occupied. It is easy to see that $\tilde{\gamma}$ can be chosen with the properties that

$$
\begin{equation*}
\text { any two sites in } \tilde{\gamma} \text { which are adjacent in } \bar{G} \text { are adjacent in } \tilde{\gamma} \tag{2.6}
\end{equation*}
$$

and
if $y_{i j}$ is a site in $\tilde{\gamma}$, then the two adjacent sites of $\tilde{\gamma}$ are $z_{i j}$ and $z_{i+1, j+1}$
for if (2.7) fails, then $y_{i j}$ can be skipped over. Let $\gamma$ be the corresponding infinite path in $\mathbb{R}^{2}$ obtained by replacing each bond of $\tilde{\gamma}$ with a line segment having the same endpoints. Then by (2.7), $\gamma$ is contained in $\left\{b^{*}: b \in B\right\} \cup \bigcup_{z_{i j} \in r} H_{i j}$. By (2.6) the latter set a.s. has an unbounded connected boundary, and that boundary is part of $W$. The percolation of $W$ follows.

Proof of Theorem 2.4. We can express $A_{i}$ as $\varepsilon_{i}\left|A_{i}\right|$ with $\varepsilon_{i}= \pm 1$ with probability $1 / 2$ each, independent of $\left|A_{i}\right|$. We now call a site $x_{i}$ a plus site if $\varepsilon_{i}=1$ and a minus site if $\varepsilon_{i}=-1$. As in the proof of Theorem 2.1,
every site is surrounded by a disjoint sequence of circuits $C_{i}, i \geqslant 1$, with all sites in $C_{i}$ plus sites if $i$ is even and all sites minus sites if $i$ is odd.

If $h<h_{\mathrm{cr}}$, then $S_{\leqslant h}$ cannot cross any plus circuit, so does not percolate. If $P\left(A_{j}=h_{0}\right)=0$, then this applies to $h=h_{\text {cr }}$ as well. If $h>h_{\mathrm{cr}}$, let $s=h / 2 \varphi(1 / 2)$, and call a site $x_{j}$ marked if $\left|A_{j}\right| \leqslant s$. Of course being marked is independent of being a plus or minus site. Note that $S_{\leqslant h}$ crosses all bonds $b$ in the sets $A$ and $B$ of Lemma 2.5, i.e., $S_{\leqslant h}$ contains the set $W$ of that lemma. Thus for $h>h_{\mathrm{cr}}, S_{\leqslant h}$ percolates a.s. If $P\left(A_{j}=h_{0}\right)>0$, then this applies to $h=h_{\mathrm{cr}}$ as well. This proves (i) of (a)-(d).

If $h \neq 0$, then $S_{h}$ cannot cross both plus and minus circuits. If $P\left(A_{j}=0\right)=0$, then this applies also to $h=0$. This completes the proof of (ii) of (a)-(c). Suppose $P\left(A_{n}=0\right)>0$. One can place a bond between every nearest-neighbor pair of sites $x_{i}, x_{j}$ for which both $A_{i} \leqslant 0$ and $A_{j} \leqslant 0$. Since the critical probability for $\mathbb{T}^{2}$ is $1 / 2$, the resulting graph has a unique infinite cluster, which we denote $C_{\leqslant 0}^{\infty}$. We can analogously define $C_{\geqslant 0}^{\infty}$, and let $\gamma$ be an infinite self-avoiding lattice path in $C_{\geqslant 0}^{\infty}$. For each $k$ we let

$$
D_{k}:=\left\{x_{i} \in \mathbb{L}: x_{i} \leftrightarrow x_{k} \text { by a lattice path entirely outside } C_{\leqslant 0}^{\infty}\right\}
$$

$D_{k}$ is the set of sites in the hole in $C_{\leqslant 0}^{\infty}$ which contains $x_{k}$, if $A_{k}>0$. Then $D_{k}$ is finite for all $k$, since $C_{\leqslant 0}^{\infty}$ includes a circuit around every site, a.s. Let

$$
\begin{aligned}
& E_{k}:=\bigcup_{: \bigcup_{i} \in D_{k}} B_{i} \\
& H_{k}:=\left\{x \in \mathbb{R}^{2}: \text { there is no path from } x \text { to infinity in } S_{\leqslant 0} \cup E_{k}^{c}\right\}
\end{aligned}
$$

so $D_{k} \subset H_{k}$. Note that if $x \in E_{k} \backslash H_{k}$, then $x$ is near the outer boundary of $E_{k}$ in the sense that $x \in B_{i} \cap B_{j}$ for some $x_{i} \in D_{k}$ and $x_{j} \notin D_{k}$. Further, $H_{k}$ is bounded and simply connected, $\psi=0$ on $\partial H_{k}$, and any two sets $H_{k}$ and $H_{m}$ either coincide or are disjoint. Therefore the boundary of the set

$$
\gamma \cup\left(\bigcup_{k: x_{k} \in \gamma} H_{k}\right)
$$

is an unbounded connected subset of $S_{0}$, which completes the proof of (d)(ii).

If $\psi(0)=h>0$, then, for the $Z$ of Lemma $2.5, \Gamma$ is contained in $\bigcup_{i: x_{i} \in Z} B_{i}$, so

$$
P(R>t \mid \psi(0)=h) \leqslant P(\operatorname{diam}(Z)>t-2)
$$

The case of $\psi(0)=h<0$ is similar. Thus (b)(iii) follows from Lemma 2.5.
The proof of (b)(iv) is the same as the proof of Theorem 2.1(e) for $h=0$. The proofs of statements (c) and (e) of Theorem 2.1 remain the same.

## 3. INFINITE SPANNING TREES AND ASSOCIATED RANDOM FIELDS

For a finite set $X \in \mathbb{R}^{2}$, a (Euclidean) minimal spanning tree (MST) of $X$ is a tree with site (i.e., vertex) set $X$ and minimal total length of all bonds (i.e., edges.) More generally, given a finite graph $G$ with site set $X$ and bond set $\mathscr{B}$, and a function $f: \mathscr{B} \rightarrow[0, \infty$ ), an $f$-minimal spanning tree ( $f$-MST) of $X$ is a tree with site set $X$ and $\sum_{b \in \mathscr{D}} f(b)$ minimal among all such trees.

We will describe how a closely related infinite spanning tree $T$ can be created for certain countably infinite sets $X \subset \mathbb{R}^{2}$ and functions $f$. It will be shown to have the property that for each site there is a unique bond of $T$ emanating from that site through which the site is connected to infinity in $T$. In other words, removing any one bond of $T$ leaves one finite and one infinite component. For "nice" $X$, for $h$ near 0 , each level set $S_{h}$ of the potential

$$
\psi(x)=d(x, T)
$$

then includes a single infinite line; this line traces around the tree, missing at most isolated pockets. Here $d(\cdot, \cdot)$ denotes Euclidean distance, and $d(x, T)=\inf \{d(x, y): y \in T\}$.

In this context, the most natural example is to take $X$ to be the set of sites of a Poisson process, take $G$ to be the complete graph or the Delaunay triangulation (see ref. 5) on $X$, and take $f$ to be Euclidean distance. However, technicalities are reduced somewhat, without altering the basic argument, if we take $X=\mathbb{L}$, one of the three standard twodimensional lattices of Section $2, \mathscr{B}$ the set of nearest-neighbor bonds, and $\{f(b), b \in \mathscr{B}\}$ i.i.d. random variables uniform in [0, 1]. Since the theme of this paper is lattice-based examples, we will take the latter course. More general results (with more complicated proofs) covering both the Poisson/ Euclidean case and the lattice/i.i.d.-uniform case in all dimensions appear in ref. 18. Our techniques here are strongly two-dimensional.

Given a graph $G$ with site set $X$ and bond set $\mathscr{B}$, and given a finite $A \subset X, x \in A, f: \mathscr{B} \rightarrow[0, \infty)$ and $r>0$, let $G_{A}$ denote the graph with site set $A$ and bond set $\{b=\{x, y\} \in G: x, y \in A\}$, and

$$
\begin{gathered}
Y_{<r}(x, A)=\left\{y \in A: x \leftrightarrow y \text { by a path in } G_{A}\right. \text { consisting only } \\
\text { of bonds } b \text { with } f(b)<r\}
\end{gathered}
$$

and

$$
Y_{<r}(x)=Y_{<r}(x, X)
$$

It is well known ${ }^{(19)}$ that for finite $A$, if $f$ is one-to-one,

$$
\begin{equation*}
\text { the } f \text {-MST of } A \text { is }\left\{b=\{x, y\} \in G_{A}: y \notin Y_{<f(b)}(x, A)\right\} \tag{3.1}
\end{equation*}
$$

This motivates us to define the infinite $f$-MST

$$
T=\left\{b=\{x, y\} \in G: y \notin Y_{<f(b)}(x)\right\}
$$

Let $\Lambda_{n} \uparrow X$ and let $T(n)$ denote the $f$-MST of $\Lambda_{n}$; from the above discussion, if $m<n, b=\{x, y\} \subset[-m, m]^{2}$, and $b \in T(n)$, then $b \in T(m)$. This means that there is a limiting set of bonds-those which remain in $T(n)$ as $n \rightarrow \infty$-which does not depend on $\left\{\Lambda_{n}\right\}$ and is precisely $T$.

A nearly identical structure was investigated by Aldous and Steele ${ }^{(20)}$ for $X$ the set of sites of a stationary point process and $f(b)$ the Euclidean length $|b|$, the difference being that in their analog of $T$, bonds $b=\{x, y\}$ with $Y_{<|b|}(x)$ and $Y_{<|b|}(y)$ disjoint and both infinite were excluded. However, as they point out, for the Poisson process the two structures are a.s. the same; see ref. 18.

Suppose $f$ is one-to-one and the vertices of $G$ have finite degree. It is clear that $T$ is acyclic, because any cycle in $G$ has a unique bond $b$ maximizing $f$, which is necessarily not in $T$, by (3.1). Further, $T$ has no finite components, for the $f$-minimizing bond connecting such a component to an outside vertex would necessarily be in $T$, again by (3.1). In particular, there are no one-point components, so $T$ spans the vertex set. What we need to prove are the facts, conjectured by Aldous and Steele ${ }^{(20)}$ in the case of stationary $X$ and Euclidean $f$, that (i) $T$ is connected, i.e., $T$ is a tree, and (ii) $T$ has finite branches, i.e., if any one bond is removed from $T$, exactly one of the two resulting components is infinite.

We turn now to $G$ a two-dimensional lattice $\mathbb{L}$-square, triangular, or hexagonal-with nearest-neighbor bonds and i.i.d. uniform values of $f$. Let $G^{*}$ denote the dual graph of $G$; each bond $b$ in $G$ has a unique dual bond $b^{*}$ which is its perpendicular bisector.

Theorem 3.1. For the nearest-neighbor graph $G$ on each of the three two-dimensional lattices $\mathbb{L}=\mathbb{Z}^{2}, \mathbb{T}^{2}$, or $\mathbb{H}^{2}$, and $\{f(b), b \in \mathscr{B}\}$ i.i.d. random variables uniform in $[0,1]$, the infinite $f$-MST $T$ is a.s. a tree with finite branches which spans $L$.

A different method of constructing a stationary random tree, with finite branches, which spans $\mathbb{Z}^{2}$ was considered by Pemantle. ${ }^{(21)}$

Proof of Theorem 3.1. The fact that $T$ spans $\mathbb{L}$ and is a.s. acyclic with no finite components was noted above. Let $C$ be a connected component of $T$ and suppose $C \neq T$. Let

$$
\partial C=\{b=\{y, z\} \in \mathscr{B}: y \in C, z \notin C\}
$$

and suppose $b_{0}=\left\{y_{0}, z_{0}\right\} \in \partial C$. Then $b_{0} \notin T$, so by (3.1) there exists a path $\gamma_{0}$ in $G$ from $y_{0}$ to $z_{0}$ consisting entirely of bonds $b$ with $f(b)<f\left(b_{0}\right)$. Let $b_{1}=\left\{y_{1}, z_{1}\right\}$ be the first bond in $\gamma_{0}$ which is in $\partial C$-such a bond necessarily exists since $y_{0} \in C$ and $z_{0} \notin C$. Similarly, there exists a path $\gamma_{1}$ in $G$ from $y_{1}$ to $z_{1}$ consisting entirely of bonds $b$ with $f(b)<f\left(b_{1}\right)$, and a first bond $b_{2}=\left\{y_{2}, z_{2}\right\}$ in $\gamma_{1}$ which is in $\partial C$; inductively, this process can be continued indefinitely. Let $\gamma$ be the path in $C$ which follows $\gamma_{0}$ from $y_{0}$ to $y_{1}$, then $\gamma_{1}$ from $y_{1}$ to $y_{2}$, and so on. Now the bonds $b_{i}$ are distinct, since $f\left(b_{0}\right)>f\left(b_{1}\right)>\ldots$, so infinitely many of the vertices $y_{i}$ are distinct, so $\gamma$ is an infinite path consisting entirely of bonds $b$ with $f(b)<f\left(b_{0}\right)$.

Let $p_{c}$ denote the critical probability for Bernoulli bond percolation on the lattice L. It follows from the above that $f\left(b_{0}\right) \geqslant p_{c}$, and since $b_{0}$ is arbitrary, that $f(b) \geqslant p_{c}$ for all $b \in \partial C$. Since all connected components of $T$ are infinite, so are all components of the dual boundary $\left\{b^{*}: b \in \partial C\right\}$. Since $C \neq T$, this dual boundary is nonempty. Thus $\left\{b^{*}: f(b) \geqslant p_{c}\right\}$ percolates. But for Bernoulli bond precolation on two-dimensional lattices, at the critical point there is a.s. no percolation of either bonds or dual bonds. ${ }^{(12)}$ Thus the probability that there is a component $C \neq T$ is zero, i.e., $T$ is connected a.s.

The existence of a bond $b$ such that removing $b$ from $T$ leaves two infinite components is equivalent to the existence of a doubly infinite path $\ldots \rightarrow v_{-1} \rightarrow v_{0} \rightarrow v_{1} \rightarrow \ldots$ of distinct sites in $T$. Since there is no percolation at $p_{c}$, with probability one not all bonds $b$ in such a path can have $f(b) \leqslant p_{c}$. Thus it suffices to consider a bond $b=\{x, y\}$ with $f(b)>p_{c}$. Let $T_{x}$ and $T_{y}$ be the two components of $T$ remaining after $b$ is removed, with $x \in T_{x}$ and $y \in T_{y}$. Suppose $b^{\prime}=\left\{x^{\prime}, y^{\prime}\right\} \in \partial T_{x}$, with $x^{\prime} \in T_{x}$; necessarily $y^{\prime} \in T_{y}$. There exist paths $\gamma_{x}$ from $x$ to $x^{\prime}$ in $T_{x}$ and $\gamma_{y}$ from $y^{\prime}$ to $y$ in $T_{y}$. In any circuit the bond $e$ with $f(e)$ maximal is necessarily not in $T$, by (3.1); in the circuit consisting of $\gamma_{x}, b^{\prime}, \gamma_{y}$, and $b$, the only bond not in $T$ is $b^{\prime}$, so $b^{\prime}$ must maximize $f$ in this circuit. In particular, $f\left(b^{\prime}\right)>f(b)>p_{c}$; this is valid for all $b^{\prime} \in \partial T_{x}$. Therefore $\left\{e^{*}: e \in \partial T_{x}\right\} \subset\left\{e^{*}: f(e)>p_{c}\right\}$; as mentioned above, the latter set does not percolate. Since $T_{x}$ and $T_{y}$ are connected, so is $\left\{e^{*}: e \in \partial T_{x}\right\}$. Hence $\left\{e^{*}: e \in \partial T_{x}\right\}$ is finite, so either $T_{x}$ or $T_{y}$ is finite.

Formally, the random field $\psi(x)=d(x, T)$ is not homogeneous, as it is only invariant under shifts by an element of the lattice $\mathbb{L}$. This can be remedied by translating the entire configuration by the random variable $U$ as in Section 2; to avoid unnecessary technicalities we will not do so here.

Corollary 3.2. Let $T$ denote the $f$-MST of Theorem 3.1, with $\mathbb{L}$ the square lattice, and define the potential $\psi(x)=d(x, T), x \in \mathbb{R}^{2}$. For each
$0<h<1 / 2$, the level line $S_{h}$ is a.s. a single infinite line which enters every square of the lattice. Further, $\operatorname{cov}(\psi(s+x), \psi(s)) \rightarrow 0$ uniformly in $s$ as $|x| \rightarrow \infty$.

Proof. The description of $S_{h}$ is immediate from Theorem 3.1. For each nearest-neighbor pair $\{x, y\}$ in the lattice, let $\Lambda_{n}(x, y)=$ $\left\{(x+y) / 2+z: z \in[-n, n]^{2}\right\} \cap \mathbb{Z}^{2}$, and define

$$
T_{n}=\left\{b=\{x, y\} \in G: y \notin Y_{<f(b)}\left(x, \Lambda_{n}(x, y)\right)\right\}
$$

Note $T_{n}$ is the same as $T$ except that one only considers paths connecting $x$ to $y$ inside a large box. Also,

$$
T_{1} \supset T_{2} \supset \ldots \quad \text { and } \quad \bigcap_{n=1}^{\infty} T_{n}=T
$$

Fix $x$ and $s$ and let $n=[|x| / 4]]-2$ (the integer part.) Let $E_{s}$ be the set of 12 bonds which have at least one endpoint in the closure of the square of form $[i, i+1) \times[j, j+1)(i, j \in \mathbb{Z})$ containing $s$, with $E_{s+x}$ defined similarly. Then the events $\left[b \in T_{n}\right], b \in E_{s}$, are independent of the events [ $\left.b \in T_{n}\right], b \in E_{s+x}$. Since at least one bond of $E_{s}$ and at least one bond of $E_{s+x}$ are in $T_{n}$, it follows that $d\left(s, T_{n}\right)$ is independent of $d\left(s+x, T_{n}\right)$. As $x \rightarrow \infty$, so that also $n \rightarrow \infty$, we have $d\left(s, T_{n}\right)-d(s, T) \rightarrow 0$ and $d\left(s+x, T_{n}\right)-d(s+x, T) \rightarrow 0$, both in $L^{2}$ uniformly in $s$. It follows that $\operatorname{cov}(\psi(s+x), \psi(s)) \rightarrow 0$ uniformly in $s$.

## ACKNOWLEDGMENTS

The research of K.S.A. was supported by NSF grant DMS-9206139, and that of S.A.M. by NSF grant DMS-9310710 and ONR grant N 00014 -91-J-1526.

## REFERENCES

1. A. V. Gruzinov, M. B. Isichenko, and Ya. L. Kalda, Two-dimensional turbulent diffusion, Zh. Eksp. Teor. Fiz. 97:476-488 (1990) [Sov. Phys. JETP 70:263-269 (1990)].
2. M. B. Isichenko, Percolation, statistical topography, and transport in random media, Rev. Mod. Phys. 64:961-1043 (1992).
3. M. B. Isichenko, Ya. L. Kalda, E. B. Tatarinova, O. V. Tel'kovskaya, and V. V. Yan'kov, Diffusion in a medium with vortex flow, Zh. Eksp. Teor. Fiz. 96:913-925 (1989) [Sov. Phys. JETP 69:517-524 (1989).]
4. S. A. Trugman and S. Doniach, Vortex dynamics in inhomogeneous superconducting films, Phys. Rev. B 26:3682-3697 (1982).
5. A. Weinrib, Percolation threshold of a two-dimensional continuum system, Phys. Rev. B 26:1352-1361 (1982).
6. A. Weinrib and B. I. Halperin, Distribution of maxima, minima, and saddle points of the intensity of laser speckle patterns, Phys. Rev. B 26:1362-1368 (1982).
7. J. M. Ziman, The localization of electrons in ordered and disordered systems, I. Percolation of classical particles, J. Phys. C 1:1532-1538 (1968).
8. M. Avellaneda, F. Elliot, Jr., and C. Apelian, Trapping, percotation and anomalous diffusion of particles in a two-dimensional random flow, J. Stat. Phys. 72:1227-1304 (1993).
9. S. A. Molchanov and A. K. Stepanov, Percolation in random fields I, II, III, Teor. Mat. Fiz. 55:246-256, 419-430; 67:177-185 (1983) [Theor. Math. Phys. 55:478-484, 592-599; 67:434-439 (1983)].
10. G. Grimmett, Percolation (Springer-Verlag, New York, 1989).
11. H. Kesten, Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982).
12. L. Russo, On the critical percolation probabilities, Z. Wahrsch. Verw. Gebiete 56:229-237 (1981).
13. Y. Higuchi, Coexistence of the infinite (*) clusters: A remark on the square lattice site percolation, Z. Wahrsch. Verw. Gebiete 61:75-81 (1982).
14. M. Aizenmann and D. J. Barsky, Sharpness of the phase transition in percolation models, Commun. Math. Phys. 108:489-526 (1987).
15. J. M. Hammersley, Percolation processes. Lower bounds for the critical probability, Ann. Math. Stat. 28:790-795 (1957).
16. M. V. Men'shikov, S. A. Molchanov, and A. F. Sidorenko, Percolation theory and some applications, Itogi Nauki Tekhniki (Ser. Prob. Theory Math. Siat. Theoret. Cybernet.) 24:53-110 (1986) [J. Sov. Math. 42:1766-1810 (1988)].
17. M. Aizenman and G. Grimmett, Strict monotonicity for critical points in percolation and ferromagnetic models, J. Stat. Phys. 63:817-835 (1991).
18. K. S. Alexander, Percolation and minimal spanning forests in infinite graphs, Ann. Prob. (1994), to appear.
19. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction (SpringerVerlag, New York, 1985).
20. D. Aldous and J. M. Steele, Asymptotics for Euclidean minimal spanning trees on random points, Prob. Theory Rel. Fields 92:247-258 (1992).
21. R. Pemantle, Choosing a spanning tree for the integer lattice uniformly, Ann. Prob. 19:1559-1574 (1991).

[^0]:    ${ }^{1}$ Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113.
    ${ }^{2}$ Present address: University of North Carolina, Charlotte, North Carolina.

